关闭广告

AI并没有学习!Nature子刊最新研究解码人工智能黑盒

新智元9490人阅读


新智元报道

编辑:alan

【新智元导读】人工智能模型一直以「黑匣子」的形态让人们感到不安,AI到底从数据中学到了什么?又是如何作出推理?最新研究为你揭秘AI的内部原理

人工智能(AI)一直在迅速发展,但对人类来说,强大的模型却是个「黑匣子」。

我们不了解模型内部的运作原理,不清楚它得出结论的过程。

然而最近,波恩大学(University of Bonn)的化学信息学专家Jürgen Bajorath教授和他的团队取得了重大突破。

他们设计了一种技术,揭示了药物研究中使用的某些人工智能系统的运行机制。

他们的研究结果表明,这些人工智能模型主要依赖于回忆现有数据,而不是学习特定的化学相互作用,来预测药物的有效性。

——也就是说,AI预测纯靠拼凑记忆,机器学习实际上并没有学习!

他们的研究结果最近发表在《自然机器智能》(Nature Machine Intelligence)杂志上。


论文地址:https://www.nature.com/articles/s42256-023-00756-9

在医药领域,研究人员正在狂热地寻找有效的活性物质来对抗疾病——哪种药物分子最有效?

通常,这些有效的分子(化合物)会对接在蛋白质上,蛋白质作为触发特定生理作用链的酶或受体。

在特殊情况下,某些分子还负责阻断体内的不良反应,例如过度的炎症反应。

可能的化合物数量巨大,寻找有效的化合物就像大海捞针一样。

因此,研究人员首先使用AI模型来预测,哪些分子最能与各自的靶蛋白对接并牢固结合。然后在实验研究中,更详细地进一步筛选这些候选药物。


自人工智能发展以来,药物发现研究也越来越多地采用AI相关的技术。

比如图神经网络(GNN),适用于预测某种分子与靶蛋白结合的强度。

图由表示对象的节点和表示节点之间关系的边组成。在蛋白质与配体复合物的图表示中,图的边连接蛋白质或配体节点,表示物质的结构,或者蛋白质和配体之间的相互作用。

GNN模型使用从X射线结构中提取的蛋白质配体相互作用图,来预测配体亲和力。

Jürgen Bajorath教授表示,GNN模型对于我们来说就像一个黑匣子,我们无法得知它如何得出自己的预测。


Jürgen Bajorath教授任职于波恩大学LIMES研究所、波恩-亚琛国际信息技术中心(Bonn-Aachen International Center for Information Technology)和拉玛机器学习与人工智能研究所(Lamarr Institute for Machine Learning and Artificial Intelligence)。

人工智能如何工作?

来自波恩大学化学信息学的研究人员,与罗马Sapienza大学的同事一起,详细分析了图神经网络是否真的学习到了蛋白质与配体的相互作用。

研究人员使用他们专门开发的「EdgeSHAPer」方法分析了总共六种不同的GNN架构。

EdgeSHAPer程序可以判断GNN是否学习了化合物和蛋白质之间最重要的相互作用,或者是通过其他的方式来得出预测。

科学家们使用从蛋白质配体复合物结构中提取的图训练了六个GNN,——化合物的作用方式以及与靶蛋白的结合强度已知。

然后,在其他复合物上测试经过训练的GNN,并使用EdgeSHAPer分析GNN如何产生预测。

「如果GNN按照预期行事,它们需要学习化合物和靶蛋白之间的相互作用,并且通过优先考虑特定的相互作用来给出预测」。

然而,根据研究小组的分析,六个GNN基本上都没有做到这一点。大多数GNN只学会了一些蛋白质与药物的相互作用,主要集中在配体上。


上图展示了在6个GNN中的实验结果,色标条表示用EdgeSHAPer确定的每个预测的前25个边中蛋白质、配体和相互作用所占的平均比例。

我们可以看到,代表绿色的相互作用本该是模型需要学到的,然而在整个实验中所占的比例都不高,而代表配体的橙色条占了最大的比例。

为了预测分子与靶蛋白的结合强度,模型主要「记住」了它们在训练过程中遇到的化学相似分子及其结合数据,而不管靶蛋白如何。这些被记住的化学相似性基本上决定了预测。


这让人想起「聪明的汉斯效应」(Clever Hans effect),——就像那匹看起来会数数的马,实际上是根据同伴面部表情和手势的细微差别,来推断出预期的结果。

这或许意味着,GNN所谓的「学习能力」可能是站不住脚的,模型的预测在很大程度上被高估了,因为可以使用化学知识和更简单的方法进行同等质量的预测。

不过,研究中也发现了另外一个现象:当测试化合物的效力增加时,模型倾向于学习到更多的相互作用。

也许通过修改表征和训练技术,这些GNN还能朝着理想的方向进一步改进。不过,对于可以根据分子图学习物理量的假设,一般来说应该谨慎对待。

「人工智能不是黑魔法。」

参考资料:

https://scitechdaily.com/decoding-the-black-box-of-ai-scientists-uncover-unexpected-results/


版权与免责声明:本文内容转载自其他媒体,目的在于传递更多信息,不代表本网观点或立场,不承担此类作品侵权行为的自己责任及连带责任。
猜你喜欢
精彩推荐

在校退役士兵可获国家助学金 申请即可得

环球网资讯 浏览 13490

《让子弹飞》开机前的第9天,导演姜文大发雷霆,“老四”一角迟迟没有找到合适的演员

趣看热点 浏览 23604

塞尔斯:霍伊伦心理素质非常强大,他的性格也很坚毅

直播吧 浏览 9614

潘通发布2024年度色彩:柔和桃

数艺社 浏览 10325

央视主持人王嘉宁官宣结婚,晒婚纱照甜蜜拥抱

军歌小碧子 浏览 13655

主动权益类基金逆袭!春节后近3个月1439只基金收复失地!

私募排排网 浏览 8254

曾经人手一双的高跟鞋 怎么突然不见了?

言安堂 浏览 12705

新外号?网友:哼导也是第一次进主场吧? 刘维伟:是的

直播吧 浏览 16226

今年有气质的女人都在穿“风衣”,适合春天,不仅时尚还保暖

静儿时尚达人 浏览 9423

佩斯科夫:"瓦格纳事件"不会对俄军行动造成影响

环球网资讯 浏览 12685

大张伟夫妇澳洲被偶遇,妻子穿8000元鞋子,脚踝纤细瘦了20斤!

缘木不求娱 浏览 9541

新款捷豹F-TYPE正式上市 售价58.20万-67.68万

网易汽车 浏览 17720

车祸后的伍兹已清醒恢复意识,但身体情况并不容乐观

趣看热点 浏览 126586

把连衣裙穿得美的女人,从来都不简单

世界音乐公号 浏览 16643

90%辣妹的夏天都爱小露一下!

瑞丽网 浏览 13520

得分生涯新高!大卫-詹姆斯砍63+21天津客场16分擒广东

网易体育 浏览 9758

大湾区晚会太真实,多位明星假唱翻车

萌神木木 浏览 12539

见证历史,瑞银宣布收购瑞信;海外欠债9.8亿?张兰回应:被资本算计

证券时报e公司 浏览 16219

故障不断!波音“吃人的飞机”再现?

大猫真探社 浏览 9749

特斯拉车顶维权女车主被判道歉 律师提醒:维权要遵守法律

汽车专业网 浏览 8248

模仿苹果应用商店,OpenAI正式推出GPT商店

网易科技报道 浏览 9616
本站所有信息收集于互联网,如本站收集信息侵权,请联系我们及时删除
沪ICP备20017958号-1